¹³C NMR (D₂O, K_2CO_3): 3.22 (s, CH₃), 45.00 (d, CH₂— P), 47.00 (d, CH2-P), 60.87 (d, CH-CH3), 79.28 (s, CH-Ph), 125.98 (s, ${}^{3}C_{arom}$), 128.31 (s, ${}^{4}C_{arom}$), 128.93 (s, ${}^{2}C_{arom}$), 138.45 p.p.m. (s, ${}^{1}C_{arom}$); ${}^{31}P$ NMR (D₂O, K₂CO₃): 6.12 (s, P—cycle), 8.20 p.p.m. (s); IR (cm⁻¹, KBr): 3060 (s, OH), 2998 (w), 1332 (w), 1178 (vs, P=O), 1120 (s, P=O), 1082 (vs, P-O), 982 (s, P-O), 936 (m).

Crystal data

 $C_{11}H_{17}NO_6P_2$ Mo $K\alpha$ radiation $M_r = 321.21$ $\lambda = 0.7107 \text{ Å}$ Cell parameters from 24 Orthorhombic reflections $Pca2_1$ $\theta = 10.9 - 11.9^{\circ}$ a = 14.361(2) Å $\mu = 0.318 \text{ mm}^{-1}$ b = 13.711(2) Å c = 7.475(2) Å T = 293 KV = 1471.9 (4) Å³ Elongated prism $0.31 \times 0.29 \times 0.26$ mm Z = 4 $D_x = 1.449 \text{ Mg m}^{-3}$ Colourless D_m not measured

Data collection

Enraf-Nonius CAD-4 $\theta_{\rm max} = 29.93^{\circ}$ diffractometer $h = 0 \rightarrow 18$ ω -2 θ scans $k = 0 \rightarrow 19$ $l = 0 \rightarrow 10$ Absorption correction: none 2306 measured reflections 2 standard reflections 2306 independent reflections 1885 reflections with $I > 2\sigma(I)$

Refinement

•	_
Refinement on F	$w = 1/[\sigma^2(F_o)]$
R = 0.026	+ $0.00016 F_o ^2$]
wR = 0.033	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.836	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm A}^{-3}$
1885 reflections	$\Delta \rho_{\min} = -0.20 \text{ e } \text{\AA}^{-3}$
180 parameters	Extinction correction: none
H-atom parameters not	Scattering factors from
refined	International Tables for
	Crystallography (Vol. C)

every 120 reflections

intensity decay: 4.15%

Table 1. Selected geometric parameters (Å, °)

	0	•	
P101	1.588 (1)	P205	1.488 (2)
P102	1.478 (1)	P2—O6	1.532 (2)
P103	1.498 (1)	P2—C1	1.816 (2)
P1—C2	1.812 (2)	O1-C4	1.451 (2)
P204	1.539 (2)	N—C2	1.502 (2)
01—P1—O2	110.52 (7)	O5—P2—C1	107.95 (7)
01—P1—O3	107.84 (7)	O6-P2-C1	108.88 (8)
01—P1—C2	102.60 (7)	P1	113.7 (1)
O2P1O3	117.23 (8)	C2—N—C3	112.5 (1)
O2—P1—C2	109.56 (8)	P2-C1-N	114.1 (1)
O3—P1—C2	108.06 (8)	P1—C2—N	113.3 (1)
04—P2—05	116.93 (8)	N-C3-C11	112.5 (1)
04—P2—06	107.48 (8)	C4-C3-C11	114.2 (2)
04—P2—C1	103.26 (8)	O1-C4-C3	108.6 (1)
05—P2—06	111.81 (9)	01-C4-C5	110.6 (1)

Table 2. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	<i>D</i> —Н	H···A	$D \cdot \cdot \cdot A$	D—H
O4—H16· · ·O5 ⁱ	0.96	1.58	2.517 (2)	162
O6—H11+ + • O3 ⁿ	1.18	1.26	2.432 (2)	168
N—H17···O2 ¹	0.93	1.78	2.629 (2)	151
o	,		1	

Symmetry codes: (i) $\frac{1}{2} - x, y, \frac{1}{2} + z$; (ii) $-x, 1 - y, \frac{1}{2} + z$.

© 1999 International Union of Crystallography Printed in Great Britain - all rights reserved

H atoms were located by difference Fourier syntheses.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: SIR92 (Altomare et al., 1993). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1026). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, M., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Engel, R. (1977). Chem. Rev. 77, 349-367.
- Engel, R. (1987). In Synthesis of Carbon-Phosphorus Bonds. Boca Raton, Florida: CRC Press.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fields, E. K. (1952). J. Am. Chem. Soc. 74, 1528-1531.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Makaranets, B. I., Polynova, T. N., Porai-Koshits, M. A. & Il'ichev, S. A. (1987). Zh. Strukt. Khim. 27, 117-124.
- Moedritzer, K. & Irani, R. R. (1966). J. Org. Chem. 31, 1603-1606.
- Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Ortiz-Avila, C. Y., Bhardwaj, C. & Clearfield, A. (1994). Inorg. Chem. 33. 2499-2500.
- Schwarzenbach, G., Biedermann, W. & Bangerter, F. (1948). Helv. Chim. Acta, 32, 1175-1186.
- Villemin, D. & Martin, B. (1995). Synth. Commun. 25, 2319-2326. Villemin, D. & Sauvaget, F. (1994). Synlett, pp. 435-436.

Acta Cryst. (1999). C55, 590-592

1,3,4,6-Tetrathiapentalene-2,5-dione

HARALD MÜLLER^a AND MARIE-THÉRÈSE AVERBUCH^b

^aEuropean Synchrotron Radiation Facility, BP 220, 38043 Grenoble, CEDEX 9, France, and ^bLEDSS, UMR CNRS 5616, Université Joseph Fourier, BP 53, 38041 Grenoble, CEDEX 9, France. E-mail: mueller@esrf.fr

(Received 15 June 1998; accepted 4 November 1998)

Abstract

The title compound, [1,3]dithiolo[4,5-d][1,3]dithiole-2,5-dione, $C_4O_2S_4$, is a sulfur heterocyclic system formally composed of a tetrathioethylene unit (C_2S_4) and two carbonyl groups. The bicyclic molecule is essentially planar and exhibits D_{2h} symmetry, although the exocyclic-O atoms lie slightly $[\pm 0.128 (3) \text{ Å}]$ out of the plane through the five-membered 1,3-dithiole (C₃S₂) ring.

Comment

In the course of our investigations into new conducting and superconducting organic materials, 1,3,4,6-tetrathiapentalene-2,5-dione (or thiapendione for short) (Schumaker et al., 1984) emerged as a key building block for the synthesis of sulfur heterocyclic systems (Müller & Ueba, 1993; Müller, Jouan & Salhi, 1997), superconducting radical cations (Müller, Svensson et al., 1997), metal complexes (Müller et al., 1998) and coordination polymers with sulfur-rich ligands (Xenikos et al., 1997). Furthermore, owing to its bifunctional character, thiapendione has also been employed successfully as a precursor for novel conducting polymers (Müller, Salhi & Divisia-Blohorn, 1997). Common features of thiapendione and the compounds mentioned above are the tetrathioethylene, the tetrathiapentalene (C_4S_4) and the carbonyl (C=O) moieties. Bond lengths in these structural elements provide a sensitive measure of the degree of oxidation and charge distribution in these materials, and enable a correlation of structural and spectroscopic data to be made. A structure determination of the neutral parent compound thiapendione, (I), has not been performed until now.

The bicyclic title compound, (I), consists of two fused 1,3-dithiole rings, which share the central C=C double bond and each bear an exocyclic-O atom. The central double bond (C1=C1ⁱ) in thiapendione is located about a centre of inversion, resulting in the crystallographically equivalent five-membered (C₃S₂) rings. The molecule (Fig. 1) is practically ideally planar; maximum deviations from the plane through the five-membered 1,3-dithiole ring (C1=C1ⁱ-S2-C2-S1) are 0.058 (3) for C2 and 0.033 (3) Å for C1ⁱ. Interestingly, the exocyclic-

Fig. 1. An ORTEPII (Johnson, 1976) representation of the title molecule showing 45% probability displacement ellipsoids.

O atom (O1), of the carbonyl group deviates slightly [0.128 (3) Å] from the plane of the 1,3-dithiole moiety. The S—C bond distances of the central tetrathioethylene unit are identical within experimental accuracy $[C1-S1 = 1.731 (1) \text{ and } C1^{1}-S2 = 1.730 (1) \text{ Å}]$ and slightly shorter than the S1–C2 and S2–C2 bonds [1.779 (2) and 1.776 (2) Å, respectively] to the carbonylic atom C2. The C=C (C1=C1^{1}) and the carbonyl (C2=O1) double bonds are 1.343 (2) and 1.205 (2) Å, respectively, and correspond to expected values (Allen *et al.*, 1987).

The thiapendione molecules lie in planes approximately perpendicular to the $[10\overline{2}]$ direction and form pancake-like stacks along the x axis. The two shortest intermolecular S···S distances observed are 3.5513(5) Å (S1···S2ⁱⁱ) within such a plane and 3.8381(6) Å (S1···S2ⁱⁱⁱ) between two adjacent planes.

Experimental

The title compound was synthesized according to Schumaker et al. (1984) and recrystallized from acetonitrile.

Crystal data

$C_4O_2S_4$	Mo $K\alpha$ radiation
$M_r = 208.30$	$\lambda = 0.7107 \text{ Å}$
Monoclinic	Cell parameters from 24
$P2_1/c$	reflections
a = 3.9321 (8) Å	$\theta = 9.85 - 14.00^{\circ}$
b = 10.886(2) Å	$\mu = 1.296 \text{ mm}^{-1}$
c = 8.3000(9) Å	T = 293 K
$\beta = 103.60(1)^{\circ}$	Elongated prism, diamond-
$V = 345.32(9) \text{ Å}^3$	like section
Z = 2	$0.32 \times 0.24 \times 0.19$ mm
$D_x = 2.007 \text{ Mg m}^{-3}$	Translucent pale yellow
D_m not measured	

Data collection Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.701, T_{max} = 0.786$ 1388 measured reflections 1319 independent reflections

Refinement

Refinement on F R = 0.030 wR = 0.045 S = 1.919 1079 reflections 46 parameters w = $1/[\sigma^2(F_o)]$ + 0.00029 $|F_o|^2$] 1079 reflections with $I > 2\sigma(I)$ $R_{int} = 0.012$ $\theta_{max} = 32.96^{\circ}$ $h = -6 \rightarrow 5$ $k = 0 \rightarrow 16$ $l = 0 \rightarrow 12$ 2 standard reflections every 120 reflections intensity decay: -1.58%

 $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Scattering factors from *International Tables for Crystallography* (Vol. C)

Table 1. Fractional atomic coordinates and equivalent Acta Cryst. (1999). C55, 592-594 isotropic displacement parameters (\check{A}^2)

Ue	$q = (1/3)\sum_i \sum_j U^{ij}$	$^{j}a^{i}a^{j}\mathbf{a}_{i}.\mathbf{a}_{j}.$	
x	y	z	U_{eq}
0.3186(1)	-0.17922(3)	0.91892 (4)	0.03759 (8)
0.2064(1)	0.07052 (3)	0.76954 (4)	0.03828 (8)
-0.1105 (4)	-0.1297(1)	0.6310(2)	0.0563 (3)
0.5273 (3)	-0.0564(1)	1.0334(2)	0.0304 (3)
0.0954 (4)	-0.0878 (1)	0.7492 (2)	0.0368 (3)
	<i>x</i> 0.3186 (1) 0.2064 (1) -0.1105 (4) 0.5273 (3) 0.0954 (4)	$U_{eq} = (1/3)\sum_{i}\sum_{j}U^{i}$ $\begin{array}{c} x & y \\ 0.3186 (1) & -0.17922 (3) \\ 0.2064 (1) & 0.07052 (3) \\ -0.1105 (4) & -0.1297 (1) \\ 0.5273 (3) & -0.0564 (1) \\ 0.0954 (4) & -0.0878 (1) \end{array}$	$U_{eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i \cdot \mathbf{a}_j.$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 2. Selected geometric parameters (Å, °)

S1—C1	1.731 (1)	S2C2	1.776 (2)
S1—C2	1.779 (2)	O1C2	1.205 (2)
S2—C1 ⁱ	1.730 (1)	C1C1 ⁱ	1.343 (2)
$\begin{array}{c} C1 - S1 - C2 \\ C1^{i} - S2 - C2 \\ S1 - C1 - S2^{i} \\ S1 - C1 - C1^{i} \end{array}$	94.82 (6)	S2 ¹ C1C1 ¹	118.3 (1)
	94.83 (6)	S1C2S2	113.78 (7)
	123.61 (7)	S1C2O1	123.0 (1)
	118.1 (1)	S2C2O1	123.2 (1)
$S1 \cdot \cdot \cdot S2^{ii}$	3.5513 (5)	$S1 \cdot \cdot \cdot S2^{iii}$	3.8381 (6)
Symmetry code: (i) (iii) $1 - x, y - \frac{1}{2}, \frac{3}{2} - \frac{1}{2}$	$\frac{1}{z} - x, -y, z$	2 - z; (ii) $-x, y - z$	$\frac{1}{2}, \frac{3}{2} - z$

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: SIR92 (Altomare et al., 1993). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1320). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Müller, H., Jouan, C. & Salhi, F. (1997). Synth. Met. 85, 1457-1458.
- Müller, H., Puig-Molina, A., Narymbetov, B. Zh., Zorina, L. V., Khasanov, S. S. & Shibaeva, R. P. (1998). Z. Anorg. Allg. Chem. 624, 1492-1496.
- Müller, H., Salhi, F. & Divisia-Blohorn, B. (1997). Tetrahedron Lett. 38, 3215-3218.
- Müller, H., Svensson, S. O., Fitch, A. N., Lorenzen, M. & Xenikos, D. G. (1997). Adv. Mater. 9, 896-900.
- Müller, H. & Ueba, Y. (1993). Synthesis, pp. 853-854.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Schumaker, R. R., Lee, V. Y. & Engler, E. M. (1984). J. Org. Chem. 49. 564-568.
- Xenikos, D. G., Müller, H., Jouan, C., Sulpice, A. & Tholence, J. L. (1997). Solid State Commun. 102, 681-685.

Redetermination of 2,3-dichloro-5,6-dicyano-1,4-dihydroxybenzenet

GAKUSE HOSHINA, SHIGERU OHBA AND MASANOBU Тѕиснімото

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 16 November 1998; accepted 14 December 1998)

Abstract

The crystal structure of the title compound, C₈H₂Cl₂-N₂O₂, was reported recently [Reddy, Ovchinnikov, Shishkin, Struchkov & Desiraju (1996). J. Am. Chem. Soc. 118, 4085–4089]. However, the space group has been corrected from Pna21 to Pnma in the present study. The molecule lies on a mirror plane perpendicular to b.

Comment

Crystals of the title compound, 2,3-dichloro-5,6-dicyano-1,4-dihydroxybenzene (DDH), are orthorhombic and the systematic absences (0kl, k+l odd, and hk0, h odd)indicate that the space group is Pnma (No. 62) or $Pn2_1a$, the $a\bar{c}b$ setting of $Pna2_1$ (No. 33). Assuming the centrosymmetric space group Pnma, the structure solution was straightforward.

Reddy et al. (1996) reported the crystal structure of DDH in space group $Pna2_1$, with lattice constants a =16.503 (2), b = 8.542 (1) and c = 6.421 (2) Å at 140 K. Their fractional coordinates of non-H atoms (x', y', z')are related to those obtained in the present paper (x, y, z)as x' = 1 - x, $y' = z + \frac{1}{2}$ and z' = 0.365 = y + 0.115. The crystal structure is essentially the same as that reported by Reddy et al. (1996). There are intramolecular O- $H \cdots Cl$ hydrogen bonds, which cause expansion of the O1-C3-C2 and O2-C6-C1 bond angles. Fig. 2 shows the intermolecular O-H···N=C hydrogen-bond network in the $y = \frac{1}{4}$ plane, which is a crystallographic mirror plane.

[†] Alternative name: 4,5-dichloro-3,6-dihydroxyphthalonitrile.